

XXX CONGRESSO NAZIONALE Società Italiana di Allergologia, Asma ed Immunologia Clinica

FIRENZE 6/9 APRILE 2017 | WWW.SIAAIC2017.ORG

Nanoparticelle e vaccini

Mario Di Gioacchino

siaaic

Professor of Occupational Medicine and Allergy, Chieti, Italy Head of "Immunotoxicology and Allergy" Unit, at CeSI Vice-President of SIAAIC

ICOH-SC on "Allergy and Immunotoxicology"

Secretary of the Italian Society of Nanotoxicology

Nanoparticle/immune system interaction

Cobalt nanoparticles modulate cytokine in vitro release by human mononuclear cells, mimicking autoimmune disease.

Nano Pd induce stem cells to produce different pattern of cytokines in relation to their differentiation state

Cytokine production by stem cells

Attenuation of allergic airway inflammation and hyperresponsiveness by silver nanoparticles

Fullerens and mast cells

- Inhibition of degranulation
- Inhibition of cytokine release
- Inhibition of IgE response
- Inhibition of PGD2 production
- Inhibition of IgE and

IMMUNOLÖGY

Examples of VLPs us	ed for vaccines and vaccine de	velopment			
Virus	Particle composition	Type/expression system	Size	Vaccine status	References
HBV	Small envelope protein (HBsAg)	rec VLP (yeast) (Recombivax-HB; Engerix-B)	22 nm	Licensed	[46,47]
	Small envelope protein (HBsAg)	rec VLP (potato)	17 nm	Preclinical	[48]
	PreS1+2 and HBsAg	rec VLP (CHO cells) (Sci-B-Vac; BioHepB)	22 nm	Licensed	[9,10,12,13]
	HBsAg	Native SVP (plasma)	22 nm	Licensed (developing world)	[49]
HPV	L1, major capsid protein	recVLP (mammalian cells; baculovirus; yeast) Gardasil, Cervarix	40–50 nm	Licensed	[50–53]
HEV	Truncated major capsid protein (ORF2)	rec VLP (baculovirus)	23.7 nm		[54–56] [57] (review)
Influenza	HA, NA, matrix	recVLP (baculovirus)	80–120 nm	Preclinical	[14–16]
HCV	Core, E1, E2	recVLP (baculovirus)	40–60 nm	Preclinical	[58-61]
Poliovirus	Capsid (VP0,1,3)	recVLP (baculovirus)	27 nm	None	[3]
HIV	Pr55gag, envelope	recVLP (baculovirus; mammalian cells; yeast)	100–120 nm	Preclinical	[62,63] [64,65] (review) [18] (review)
Ebola virus; Marburg virus	Glycoprotein (GP) and matrix (VP40)	recVLP (mammalian cells)	Filovirus-like particle	Preclinical	[66–68]
Norwalk virus	capsid	rec VLP (baculovirus; transgenic potatoes)	38 nm	Phase 1	[69,44,70]
Rotavirus	VP2,VP6,VP7	recVLP (baculovirus)	70–75 nm	Preclinical	[5,71,72]
SARS coronavirus	S, E and M	rec VLP (baculovirus)	100 nm	Preclinical	[73]
Abbreviations: HBV, virus; SARS, severe a	hepatitis B virus; HPV, huma cute respiratory syndrome.	an papilloma virus; HEV, hepatitis E virus;	; HCV, hepatitis C	C virus; HIV, human	immunodeficiency

Virus like particles

Novel nanoparticles for the delivery of recombinant hepatitis B vaccine

nanomedicine

Nanoparticles-Based Allergen-Delivery Systems

- Biodegradable Polymeric Nanoparticles.
 - Polyesters
 - Polylactides PLA and PLGA (Bet v 1 Ole e 1 ragweed mites)
 - Poly(ε-Caprolactone) PCL (mostly used for bacterial vaccine)
 - Poly(Anhydrides) (PVMA (Gantrex nanoparticles) (Grass)
 - Poly(Gamma-Glutamic Acid) γPGA (Grass)
 - Poly(Vinylpyrrolidone) PVP (aspergillus fumigatus)
 - Polysaccharides Chitosan (mites peanut)
- Nondegradable Polymeric Nanoparticles
 - Latex, gold, silica, or polystyrene (in vivo clearance?)

Gantrex nanoparticles (methyl vinyl ether and maleic anhydride - PVMA)

Symptoms score after the challenge with OVA i.p.								
Treatment	Temperature decrease (°C)	Piloerection	Mobility	Cyanosis	Survival rate (%)			
OVA	7.2 ± 1.1	+	Low	+++	40			
OVA ⁱⁿ -NP	7.3 ± 0.2	+	Normal	++	100			
OVA ⁱⁿ -LPS ^{out} -NP	4.5 ± 3.6	++	Low	++	20			
OVA ⁱⁿ -LPS ⁱⁿ -NP	6.1 ± 2.2	+	Normal	++	80			

Decrease in specific IgE

Increase in IgG(2a) isotype

Reduced mortality rate and mMCP-1 levels in challenge experiment **Induction of Th1-Type Immune Response by Chitosan Nanoparticles Containing Plasmid DNA Encoding House Dust Mite Allergen Der p 2 for Oral Vaccination in Mice**

Figure 5. Immunohistochemical examination of Der p 2 expression in mouse stomach and small intestine 3 days after oral delivery of DNA nanoparticles. (A) Intestine from oral PBS (×100). (B) Intestine from oral naked DNA (pcDNA3.1) (×100). (C) Intestine from oral naked DNA (pDer p 2) (×100). (D) Intestine from oral chitosan-pDer p 2 nanospheres (×100).

Peyer's patch

Cellular & Molecular Immunology

300 mm

10 1 2.0 T

1.5 -

1.0 -0.5 0.0

17 HM

Haive

gol.

40000

20000

7 um

AT HM

1 um 300 mm

i

- Nanoparticles can be designed to provoke an immune response, by either direct immunostimulation of antigen presenting cells or delivering antigens to specific cellular compartments
- For the obtention of the desired therapeutic response, size particle control is important since microparticles are rapidly cleared by reticuloendothelial system, while nanoparticles have prolonged circulation time and are efficient drug, enzyme, and protein carriers by any route of administration
- These biodegradable polymers can be either natural (chitosan, alginate, carrageenan, albumin, gelatin, collagen, among others) or synthetic [poly(lactic acids), PLA), poly(lactide-co-glycolic acids), PLGA), poly(methyl meth- acrylate), PMMA), poly(ε-caprolactone), PCL), poly(alkyl- cyanoacrylates), PACA), and copolymers].
- The former generally provide a relatively quick drug release, while the latter enable extended drug release over periods from days to several weeks

Nanoparticle assisted

The key advantages of using nanoparticulate carriers:

- Improved solubility and bioavailability of the cargo;
- Possibility to be loaded with a variety of cargos such as siRNA, peptides, proteins, and small molecule therapeutics.
- The cargo can be protected from degradation, which can increase its half-life, enhancing potential efficacy.
- NPs can be modified for targeted site-specific delivery, mitigating systemic toxicity issues.
- > To date, there are 45 NPs formulations approved for clinical use

ies

JVS

