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Figure 1. Compositional differences in the microbiome by anatomic site

High-throughput sequencing has revealed substantial intra-individual microbiome vanation
at different anatomical sites, and inter-individually for the same anatomical

sites 953 However, higher level (e.g. phylum) taxonomic features display temporal
(longitudinal) stability m individuals at specific anatomical sites. Such site-

differences as well as observed conservation between buman ho: rovide an important
framework to determine the biological and pathological significance of a particular
microbiome compontion. The figure indicates percentages of sequences at the taxonomae
phylum level from selected references. Certain features, such as the presence or absence of
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FIGURE 1 Schematic representation of host-microbe interactions in airways. Bacterial airway microbiome is composed
of multiple and interacting bacterial communities. Bacteria may interact with other microbes (eg. mycobacteria, viruses
and fungi) and with the host, modulating immune responses. These interactions can be modulated by the effects of
environmental factors on the host and/or the microbiome. The role of other bacterial communities, including gut and

skin microbiome, in modulating airway diseases is also emerging.
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Examples of association of human conditions with particular microbiota characteristics

Disease Relevant finding Reference
Psonasis Increased ratio of Firmicutes to Actinobacteria 8
Reflux esophagitis Esophageal microbiota dominated by 75,134
gram-negative anaerobes
Gastric microbiota with low or absent H. pyilonr
Obesity Reduced ratio of Bacteroidetes to Firmicutes 1731
Childhood-onset asthma Absent gastric Helicobacter. pylori (especially 96,135
cytotoxin-associated gene (cagAd) genotype)
IBD (colitis) Increased Enterobacteniaceae 113
Functional bowel diseases  Increased Vedlonella and Lactobacillus 136
101,102

Colorectal carcinoma

Cardiovascular disease

Increased Fusobacterium spp.

Gut microbiota-dependent metabolism
of phosphatidylcholine

137
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The biodiversity hypothesis and allergic disease:
world allergy organization position statement

Tari Haahtela'”, Stephen Holgate?, Ruby Pawankar®, Cezmi A Akdis*, Suwat Benjaponpitak®, Luis Caraballo®,
Jeffrey Demain”, Jay Portnoy®, Leena von Hertzen', and WAQ Special Committee on Climate Change
and Biodiversity
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Microbial diversity and asthma
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Figure 3. Relationship between Microbial Exposure and the Probability of Asthma.
In both the PARSIFAL study and GABRIELA, the range of microbial exposure was inversely associated with the prob-

ability of asthma.

Ruby Pawankar, NMS




Exposure to stables (livestock farming)
and/or farm milk in the 1st year of life

H No exposure

B Milk only

[ Stable only

[J Stable and milk
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1.4

Asthma Asthma Hay fever Hay fever Atopy
diagnosis symptoms diagnosis symptoms

Farm vs non-farm children: 4 to 10 folds difference in asthma prevalence

ALEX-Study Lancet 2001 Ruby Pawankar, NMS




Rural vs urban Beijing: Asthma symptoms
past 12 months (video questionnaire)

Urban Rural P
3531 3546

Wheeze attack 109 (3.1%) 11 (0.8%) <0.001

Exercise induced
wheeze 218 (6.2%) 51 (1.4%) <0.001

Severe wheezing
attack 58 (1.6%) 4 (0.1%) <0.001

Ma 'Y et al. Pediatr Pulmonol 2009 ;44:793-9.
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Possible protective mechanisms of microbial

exposure in rural/farm environment

‘ Traditional farm environment ‘

{

’ Microbial products ‘
‘ ‘ Xenogeneic signals? ‘
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and mast cells inflammation
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Disordered Microbial Communities in Asthmatic Airways

Markus Hilty’, Conor Burke?, Helder Pedro®*, Paul Cardenas’, Andy Bush’, Cara Bossley’, Jane Davies’,
Aaron Ervine®, Len Poulter®, Lior Pachter®, Miriam F. Moffant®, William O. C. Cookson'*
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Microbioata in asthmatic airways
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Upper Airways Microbiota in Antibiotic-Naive Wheezing
and Healthy Infants from the Tropics of Rural Ecuador

Paul Andres Cardenas'?3, Philip J. Cooper®*>, Michael J. Cox', Martha Chico? Carlos Arias?,
Miriam F. Moffatt'®, william Osmond Cookson'*?

Results: We obtained 76,627 high quality sequences classified into 182 operational taxonomic units {OTUs). Firmicutes was
the most common and diverse phylum {71.22% of sequences) with Streptococcus being the most common genus (49,72%),
Known pathogens were found significantly more often in cases of infantile wheeze compared to controls, exemplified by
Haemophilus spp. (OR=2.12, 85% Confidence Interval (Cl) 1.82-2.47; F=546x107"") and Staphylococcus spp. (OR=124.1,
956eC1 59.0-261.2: P=187=10""""). Other OTUs were less common in cases than controls, notably Veillonella spp.
{OR =0.59, 95%Cl=0.56=0.62: P=8.06x 10728,

Discussion: The airway microbiota appeared to contain many more Streptococci than found in Western Europe and the
USA. Comparisons between healthy and wheezing infants revealed a significant difference in several bacterial phylotypes
that were not confounded by antibiotics or use of inhaled steroids. The increased prevalence of pathogens such as
Haemophilus and Staphylococcus spp. in cases may contribute to wheezing illnesses in this age group.



The airway microbiome in patients with severe
asthma: Associations with disease features
and severity
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The Effects of Airway Microbiome
on Corticosteroid Responsiveness in Asthma.

Of the 39 asthmatics, 29 were CR, 10 were CS. BAL microbiome from CR
and CS asthmatics did not differ in richness, evenness, diversity and
community composition at the phylum level, but did differ at the genera
level, with distinct genera expansions in 14 CR asthmatics.

Preincubation of asthmatic airway macrophages with Haemophilus
parainfluenzae, a uniquely expanded potential pathogen found only in CR
asthma airways, resulted in p38 MAPK activation, increased IL-8, MKP-1
MRNA (p<0.01) expression and inhibition of corticosteroid responses . This
was not observed after exposure to commensal bacterium Prevotella
melaninogenica. Inhibition of transforming growth factor beta associated
kinase-1 (TAK1), upstream activator of MAPK, but not p38 MAPK restored
cellular sensitivity to corticosteroids.

A subset of asthmatics demonstrates airway expansion of specific gram-
negative bacteria, which trigger TAK1/MAPK activation and induce
corticosteroid resistance. TAK1 inhibition restored cellular sensitivity to
corticosteroids.

Goleva E Ruby Pawankar, NMS




Airway microbiome (infant nasopharyngeal)
impacts severity of lower respiratory infection
and risk of asthma development.

The nasopharynx microbiome during the critical first year

of life in a prospective cohort of 234 children, showed initial
colonized with Staphylococcus or Corynebacterium before
stable colonization with Alloiococcus or Moraxella.

Transient incursions of Streptococcus, Moraxella, or
Haemophilus marked virus-associated ARIs.

Early asymptomatic colonization with Streptococcus was a

strong asthma predictor, and antibiotic usage disrupted
asymptomatic colonization patterns.
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Gut microbiome: Early infancy microbial
and metabolic alterations affect risk of childhood
asthma

Gut microbiota of 319 subjects enrolled in the Canadian
Healthy Infant Longitudinal Development (CHILD) Study
showed that infants at risk of asthma exhibited transient gut
microbial dysbiosis during the first 100 days of life.

The relative abundance of Lachnospira, Veillonella,
Faecalibacterium, and Rothia was significantly decreased in
children at risk of asthma. This was accompanied by reduced
levels of fecal acetate and dysregulation of enterohepatic
metabolites.

Inoculation of germ-free mice with these four bacterial taxa
ameliorated airway inflammation in their adult progeny

Ruby Pawankar, NMS




Scenario
in the Upper Airways

The nose is a Cilia and mucous
primary defender lining trap inhaled

against inhaled | microbes
pathogens =
Inflammation 1}

from viral
infection and
allergic
reactions

Inhaled medicines
and oral antibiotics

There is a delicate balance of microbes that are maintained to keep that
environment healthy. Weakened immune systems can throw off that balance and
allow the wrong microbes to grow out of control.

http://commons.wikimedia.
org/wiki/File:Human- Summer 2012 Workshop in Biology and

nose.jpg Multimedia for High School Teachers Ruby Pawankar NMS




Chronic Rhinosinusitis with Nasal
poylps

A. Nasal polyps.
B. Eosinophil infiltration.
C. Increased IL-5* Th2 cells.

D. Production of RANTES
and eotaxin by epithelial and
inflammatory cells.

Hamilos DL et al. Clin Exp Allergy 1998.




MICROBIOME

Sinus Microbiome Diversity Depletion and
Corynebacterium tuberculostearicum Enrichment
Mediates Rhinosinusitis

Nicole A. Abreu,' ?*¥T Nabeetha A. Nagalingam,?* Yuanlin Song,** Frederick C. Roediger,*
Steven D. Pletcher,” Andrew N. Goldberg,? Susan V. Lynch®®

Persistenmt mucosal infflammation and microbial infection are characteristics of chronic rhinosinusitis (CRS). Mucosal
microbiota dyshiosis is found in other chronic infllammatory diseases; however, the relationship between sinus mi-
crobiota compaosition and CRS is unknown. Using comparative microbiome profiling of a cohort of (RS patients and
healthy subjects, we demonstrate that the sinus microbiota of CRS patients exhibits significantly reduced bacterial
dlversny mmpared with that of healthy controls. In our cchort of {RS patients, multiple, phylogenetlm Ity distinct

-‘l. Il-. .a“l"ll" -t *l1 .II[-I[J[I-I I S S I 1E "'-l‘.'l!.ll‘Q " (K11 l-l‘
Corynebacterium tubercufostearicum. We reaapitulated the conditions observed in cur human cohort in a murine
model and confimed the pathogenic potential of C. tuberavfostearicum and the critical necessity for a replete

muccsal microbiota to protect against this species. Moreover, Lactobacilius sakei, which was identified from our
comparative miaobiome analyses as a pmantlally protective species, defended against C tubercuiostearicum sinus

health is highly dependent on the composition cf the resident rmcrcbiota as well as identify both a new sinoc-
pathogen and a strong bacterial candidate for therapeutic intervention.

Sci Transl Med 4, 151ral24 (2012)
Ruby Pawankar, NMS




Decreased diversity of nasal microbiota
and their secreted extracellular vesicles
in patients with CRS : a metagenomic analysis

» Nasal lavage (NAL) fluid samples were obtained from 5
patients with CRS with polyposis, 3 patients with CRS
without polyposis, and t3 non-CRS controls.

> After preparation of bacteria and EV from samples using
differential centrifugation, genomic DNA was extracted
and 16S-rDNAamplicons were subjected to high-
throughput pyrosequencing on a Roche 454 GS-FLX
platform.

E.-B. Choi et al, Allergy 2014; 69:217
Ruby Pawankar, NMS
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Compositional differences in bacteria and their secreted extracellular
vesicles (EV) between chronic rhinosinusitis (CRS) with and without
polyps.

a) Relative abundance of Staphylococcus aureus and its extracellular
vesicles in CRSwWNP and CRSsNP. *P < 0.05
b) Compositions of major bacterial genera in nasal lavage (NAL) fluids
from patients having CRSwWNP and CRSsNP.
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Results

Samples from patients with CRS had greater bacterial abundance
and lower diversity, compared with non-CRS.

At each phylogenetic level, Bacteroidetes decreased while
Proteobacteria increased in the CRS group at the phylum level.

At the genus level, Prevotella spp. decreased in the CRS group,
while Staphylococcus spp. increased from both bacteria and EV. S.
aureus and its secreting EV compositions were higher in samples
from CRS with polyps compared with CRSsNP.

Conclusions: patients with CRS have altered nasal microbiota and
decreased diversity in bacterial compositions as well as increased
S. aureus abundance in those patients with polyps.

Ruby Pawankar, NMS




Age-based bacteriology
of Chronic Rhinosinusitis in Japan
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Inflammatory paterns

IgE and microbiome
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Local IgE production in Nasal Polyposis
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Nasal polyp patients with specific IgE to grass
allergen in tissue, but not in serum react to allergen

Inhalant SAEs
allergens

e Mediator
release

H o
. v 2 g
TCM anti-IgE GP1000 GP300 GP100 GP10

Mucosal tissue polyclonal IgE is functional in response to allergen and SEB
Nan Zhang, G Holtappels, P Gevaert, J Patou, B Dhaliwal, H Gould, C Bachert. Allergy 2010
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High Fc epsilon Rl expression In
hasal polyps of atopics
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IL-4 + IgE enhance mediator
release from nasal mast cells

CIR (freshly isolated)
CIR untreated & sensitized
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Chronic mast cell activation
through polyclonal IgE
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Compared to AR subijects, the percentage of specific IgE abs to GP and HDM out of the total IgE values
was significantly lower a, in nasal polyp tissue with 2.8% (0.5%-6.4%; p<0.005) and b, in serum with
0.6% (0.1 — 8.1%, p=0.03) vs.14.7% (9.3 - 27.5%) and 7.2% (3.1 — 11%), respectively.

Ruby Pawankar, NMS




Correlation between ECP and polyp
IgE / IgG antibodies
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Fig. Correlation between ECP level and D.pteronyssinus (DP)-specific IgE antibody (A) or IgG (B) in nasal

polyp homogenate.
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Low numbers of T-regulatory cells in nasal polyps
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Fig. 4. The number of thymic stromal lymphopoietin (TSLP) positive cells in the
nasal mucosa and nasal polyps. v e mowsensnmeu y o oo s e
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Correlation between TSLP and IgE
in NP

(r=0.78, P<0.05).
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Correlation between TSLP and
eosinophils in NP

r=0.78 p<0.001
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Life and times of a biofilm -
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Allergy

ORIGINAL ARTICLE AIRWAY DISEASES

Staphylococcus aureus invades the epithelium in nasal
polyposis and induces IL-6 in nasal epithelial cells in vitro
F. Sachse’, K. Becker®, C. von Eiff*®, D. Metze® & C. Rudack’

wngology s Anstiute of Medcal Meordbiology, "Department o Dermaiodogy, University Hospetal Monster, hMonsier,

Resuliz Peptide nucleic acid-flucrescence fa site hybndization positive bactenal cells
were significantly incmased in the epithelium of CRSwNP (1725 compared to
CRESNP (0/5) and TM (1100, Good concordance of FINA-FISH results and 5. g
ey cultivation was found applying Cohen's x for CRSWNP (k= 0841 and TM
(e = 100 Intracellular pemistence assay with 5. airens stmin NMewman and its
cormsponding small-colony vadant mutant strain 11133 demonmstrated intracellular
suwrvival and replication of 5. serais within NPBEC:. Both 5 awereus strains signifi-
cantly imdweed TE-6 bt mot TL-13 in infected WNPEC: and in WFEC: challenged with
cormaponding staphylocoozal supematants.

EM: Nasal polyp epithelial cells
infected with S. aureus hemB
mutant. Screenshots were taken
at 0.5 and 24 h.

Ruby Pawankar, NMS




The association between bacterial colonization and

inflammatory pattern in Chinese chronic rhinosinusitis
patients with nasal polyps

L. Ba"®", N. Zhang®’, J. Meng", J. Zhang®, P. Lin*, P. Zhou’, S. Liu" & C. Bachert®

100Allergy 2011

Different T-effector cell patierns in 89 nasal polyps
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Gut microbial population increases the risk

for FA and respiratory allergy

Taxon Average RA
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Allergies associated with low diversity
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What can we do:
Gut microbiome, diet and lung inflammation

Feeding mice with a diet high in fiber

\ 4

Increase in the relative abundance of Bacteroidaceae
and Bifidobacteriaceae

Systemic short chain fatty acids SCFA

\ 4
\ 4

Decreased lung inflammation induced by HDM

Tolerogenic DCs

Trompette A., et al. Nat. Med. 2014;20:159-166




Conclusion

Microbiota in early life can influence development of
inflammatory diseases like asthma, CRS, other allergic
diseases

The nature and mechanisms of growing biofilm is crucial for
efficient prophylaxis and treatment of chronic biofilm infections.

Better understanding of the microbiome and alterations in
allergic diseases, relation to disease severity in early life may
guide early interventions

Early interventions to restore the dysbiosis may prevent the

development of disease.
Ruby Pawankar, NMS




